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radiation. The reciprocal-lattice points 323 and 320 do 
not pass the Ewald sphere belonging to the 
wavelength of Cu Ka2, but when the reciprocal- 
lattice points are replaced by spheres, these spheres 
touch the Ewald sphere of Cu Ka2 and contribute to 
the intensity in the above-mentioned region. 

Comparison of measured and calculated 
Umweganregung patterns 

Fig. 2(b) is calculated for Cu Kal  radiation, Fig. 2(c) 
for Cu Kot 2 radiation, qJ is zero in the [100] direction. 
With these two diagrams it is possible to index all 
Umweganregung peaks of the measured pattern in 
Fig. 2(a). The indices of the operative and cooperative 
reflections are given in Tables 1 and 2 together with 
their Bragg angles and structure factors. The zero 
point for qJ in the measured diagram is chosen 
arbitrarily. 

The leftmost peak in F ig .2 (a )  is built up of the 
two operative reflections 221 and 27-4 with Cu Kal 
radiation. The second peak belongs to the same reflec- 
tions, but for Cu Ka2 radiation. The difference in qJ 
for these two peaks is qJ~,- qJ-2 = -0 '42° ,  as can be 
calculated from values in Tables 1 and 2. The third 
peak is the peak discussed above, having a respective 
triangle in Fig. 2(b) only. 

Despite the difficulty of correcting for the super- 
position of the Cu Kal and Cu Ka2 peaks and dis- 

regarding the problematical second peak in Table 1, 
one finds that the comparison of the measured and 
calculated intensities gives surprisingly good agree- 
ment. The disagreement between the measured and 
calculated intensities for the peak at 0 = 52.18 ° is 
probably due to experimental shortcomings. As can 
be seen in Fig. 1 the intensity ratio of the two highest 
peaks varies between 1:0.7, in good agreement with 
the theory, in the range 20-40 ° and 1 : 1 in the 0 range 
50-70 ° , owing to inadequate measurements. 

Recently Soejima, Okazaki & Matsumoto (1985) 
referred to a similar program for the simulation of 
scanning. 

The author is grateful to Dr G. Adiwidjaja for 
performing the measurements. 
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Abstract 

The polyhedron which confines the Poynting vectors 
of N-beam transmissions in crystal space is referred 
to as the Borrmann pyramid. The observation of this 
Borrmann pyramid is realized from the diffraction 

* This work forms part of the PhD dissertation of CC. 
t" Present address: National Tsing Hua University. 
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images of the four-beam, (000)(220)(220)(400), trans- 
mission case of silicon single crystals for Mo Ka. The 
directions of the Poynting vectors for the eight modes 
of wave propagation involved and the diffraction 
images are calculated. These calculations confirm the 
experimental observations. The variation of the direc- 
tion of the Poynting vector for each mode is also 
reported. 
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I. Introduction 

Transmission(Laue)-type multiple diffraction has 
long been studied for investigating the dynamical 
interaction of wavefields in crystals, in particular, the 
enhanced anomalous transmission effect of Borrmann 
& Hartwig (1965). Since 1965, there have been several 
articles on the theoretical and experimental aspects 
of this diffraction phenomenon. These include the 
work of Saccocio & Zajac (1965a, b), Hildebrandt 
(1967), Joko & Fukuhara (1967), Ewald & Heno 
(1968), Heno & Ewald (1968), Uebach & Hildebrandt 
(1969), Balter, Feldman & Post (1971), Umeno & 
Hildebrandt (1975), Post, Chang & Huang (1977), 
H¢ier & Aanestad (1981), and many others. Fairly 
complete references are given by Chang (1984). Most 
of these deal with anomalous transmission in thick 
crystals. Only a limited number are concemed with 
thin crystals. In such cases other dynamical effects, 
like Pendell6sung [see Hart & Lang (1961), Hglier & 
Aanestad (1981)], were often the main goal of the 
investigation. 

In this article, we investigate the Borrmann-fan 
effect in N-beam transmission cases for thin crystals. 
The N-beam Borrmann fan, which forms a polyhe- 
dron in crystal space, is called, hereafter, the 
Borrmann pyramid. The formation of the Borrmann 
pyramid, though not unexpected, has not been 
studied in the light of the dynamical theory of X-ray 
diffraction. For this purpose, investigations, both 
experimental and theoretical, have been carried out 
and the results are reported here. 

ponents of the electric fields and the continuity of 
the normal components of the electric displacements. 
The Poynting vector for a given mode j inside the 
crystal then takes the form (for example, see Kato, 
1974) 

Sj(r) = (c/8~r) Y~ g:HIDH(j)I 2 
H 

x exp [-4~kS"(j)fie. ( r -  re)I, (1) 

where 8" is the imaginary part of the accommodation 
(Ewald, 1916), the eigenvalue for mode j. Dn( j )  

is the electric displacement ofmodej  for the reflection 
H. The unit vector fie is the inward surface normal 
to the entrance surface. Kn and kn are the wave 
vectors inside and outside the crystal forthe H reflec- 
tion. The magnitude k is equal to 1/h. Kn is the unit 
vector of KH. The vector re is the position vector of 
the entrance surface. 

As is well known in two-beam diffraction, the 
Borrmann fan is the area spanned by the Poynting 
vectors within the crystal. The direction of the Poyn- 
ting vector lies in the plane of incidence for the given 
reflection. 

In a multi-beam case, the Poynting vectors span in 
three-dimensional space. The direction of energy flow 
for each mode of propagation should be defined by 
at least two angles. In addition, the Poynting vector 
is perpendicular to the dispersion surface (Kato, 
1958). Calculation for the coordinates of tie points 
on the dispersion surface should be carded out so as 
to determine the direction of Poynting vectors. 

II. Theoretical considerations 

The Ewald dynamical theory (Ewald, 1916, 1917), in 
Laue's formulation (yon me, 1931), for N-beam 
transmission is adopted here. The fundamental 
equation of wavefields is treated as an eigenvalue 
equation. Since the dielectric constant of the crystal 
is complex, the eigenvalues are also complex. The 
real parts of the eigenvalues specify the coordinates 
of the tie points (Ewald, 1916) on the dispersion 
surface. The imaginary parts are proportional to the 
linear absorption coefficients. Each eigenvalue 
defines a type of wave propagation for the wave field 
inside the crystal, a so-called mode of propagation. 
Usually, the number of modes in an N-beam trans- 
mission diffraction is 2N, where the factor of 2 is due 
to the two polarized components, tr and ~r, of the 
wave field. 

The eigenvectors yield the amplitude ratios among 
the diffracted waves, Do: Du : De : D o : . . . .  The sub- 
scripts indicate the involved waves 0, H, P and Q, 
the 0 wave being the incident wave. The magnitudes 
of the wave fields are then determined by the boun- 
dary conditions for wave fields at the entrance and 
exit surfaces, i.e. the continuity of the tangential com- 

III. Calculations 

The calculation procedure given by Chang (1984) is 
employed. Since the calculation of the present case 
involves the dispersion surface in reciprocal space 
and the direction of Poynting vectors in real space, 
the coordinates chosen for the reciprocal and the real 
space are shown in Figs. l (a)  and (b) respectively. 
The four-beam, (000)(220)(220)(400), case of silicon 
for Mo Ka is considered here. In Fig. l (a) ,  the Laue 
point L is chosen as the origin for the coordinates x, 
y, z. The x direction is perpendicular to the crystal 
plate, which is parallel to the (001) planes. The yz 
plane is parallel to the crystal plate. The z axis is 
chosen to be perpendicular to the reciprocal-lattice 
vector 0P of the 400 reflection. OH and 0Q are the 
reciprocal-lattice vectors of the (220) and (220) 
planes. C is the center of the circle circumscribing 
the four reciprocal-lattice points 0, H, P and Q. The 
coordinates of an entrance point A(x, y, z) are defined 
by the azimuthal angle ~ and the angular deviation 
AO from the exact Bragg angle Op of the 400 reflection: 

x=(AO)ksin~bsinOp, y=(AO)kcostp,  

z = (AO)k sin 0 cos 0p. (2) 
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T is a tie point for a mode of propagation, A T  is the 
accommodation equal to kB (Ewald, 1916) and is 
perpendicular to the entrance surface. In Fig. l(b),  
the origin of the coordinate system in real space is 
the point at which the incident beam impinges on the 
entrance surface of the crystal. The axes x, y and z 
have the same meaning as those of Fig. l (a) .  The 
Poynting vector Sj of mode j is defined by the polar 
angle 0j and the azimuthal ~bj. Points 0, H, P and Q 
are the points of interception of the diffracted beams 
0, H, P and Q with the exit surface of the crystal. 
The polyhedron EOHPQ, formed by the Borrmann 
fans of the reflections H, P, Q, H -  P and P - Q ,  is 
the expected Borrmann pyramid. 

Fig. 2 is the intersection of the dispersion surface 
with the xy plane, which shows the dispersion curves 
along the 400 reflection line. There are eight curves 
for the eight modes. The corresponding linear absorp- 
tion coefficients are plotted in Fig. 3. At the exact 
four-beam point, Z Z  = 0, modes 1 and 2 are the lowest 
absorbing modes, having their dispersion sheets 
closest to the Laue point. 

The directions of the Poynting vectors for the eight 
modes involved are then determined by calculating 
the angles 0y and ~,j for the normals to the correspond- 

(a) 

Incident 
X-Rays 

= 
. . . .  . _ . Z :  

/ - -  

/ 
/ /  

/ 

(b) 

Fig. 1. (a) The coordinates for the dispersion surface in reciprocal 
space; (b) the coordinates in crystal space used to define the 
direction of the Poynting vector Sj. 

g 

°-70.00-50.00 -~0.00 .--10:00 ~ 1~0-()0 3~0.00 

ing dispersion sheets at various tie points. Fig. 4 shows 
the interception of the Poynting vectors with the plane 
OHPQ in reciprocal space. This is obtained at the 
angular deviation AO = 2" and the azimuth ~ varying 
from 0 to 360 ° in increments of 4 °. The coordinate 
and absicissa are defined as 

Xw = k sin Op - k cos Op tan 0j sin ~j 
(3) 

Yw = k cos Op tan 0j cos ~j. 

To prevent confusion, the pair of modes that have 
almost the same dispersion curves (see Fig. 2) are 

o 

8 

o= 

1.2 

6 

7 
8 

7-50-00 -'30.00 -~0.00 1'0-00 3'0.00 
RGX × 1 0  ~ 

50-00 70.00 90-00 

Fig. 2. Calculated dispersion curves along the 400 reflection line. 
The coordinate and abscissa are the x and z axes of Fig. l (a) .  
The scale is cm -~. The position with x = z = 0 is the Laue point 
(L). 
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Fig. 3. Calculated linear absorption coetficients for Fig. 2. The 
abscissa Z Z  is the z axis of  Fig. l (a) .  The scale of Z Z  is cm -~. 



CICERO CAMPOS AND SHIH-LIN C H A N G  351 

represented by a single curve for their Poynting vec- 
tors in Fig. 4. The distribution of points along these 
curves shows the distribution of the Poynting vectors 
in reciprocal space, i.e. the distribution of rays in real 
space. Comparison between this diagram and Fig. 2 
can be made by considering the normals of the disper- 
sion curves in Fig. 2 and tracing them along the HQ 
direction in Fig. 4. 

From Fig. 4, one observes that modes 1 and 2 have 
the same distribution of rays as modes 7 and 8, except 
that the latter has a shorter circumference. The distri- 
bution of modes 3 and 4 resembles that of modes 5 

6 '  

6" 

o. L 

,q .  

O 

5,6 

i P 

H 

,00 0-08 (J.16 IJ.24 0.32 6.48 0'.48 .0'.56 
X W  

Fig. 4. The interception (points) of the Poynting vectors of the 
eight modes with the plane OHPQ of Fig. l(b) for AO = 2". The 
solid and broken lines serve as guides for the eye. The coordinates 
are defined in equation (3). The scale is/~-1. 
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Fig. 5. The distribution of the Poynting vectors of Fig. 4 for AO 
varying from 0 to 20". 

and 6. However, the former is confined within the 
area circumscribed by the curve of modes 7 and 8. 

Fig. 5 is the superposed distribution of the Poyn- 
ting vectors of Fig. 4, calculated for AO ranging from 
0 to 20" with the increment 0-1'. All the Poynting 
vectors lie inside the square OHPQ. The center of the 
square corresponds to the position of the exact four- 
beam point. Hot comers are seen. This is very similar 
to the hot-edge effect in two-beam diffraction for a 
very thin crystal, i.e./zt -~ 1 (Kato, 1974). At the center 
of the square the density of the Poynting vectors is 
higher than the densities around the center. Overlap- 
ping of the points is expected. Calculations have also 
been performed for AO greater than 20". However, 
none of the Poynting vectors lies outside the square. 
This provides the evidence that all the Poynting vec- 
tors are confined in the Borrmann pyramid EOHPQ. 
Consequently, for a weakly or nonabsorbing crystal 
with respect to the wavelength used, all the diffracted 
beams should have diffraction images in the form of 
a square. These images should, in principle, be 
observable. 

I V .  Experimental 

The experimental set-up sketched in Fig. 6 was used 
to observe the square-formed images. It consisted of 
a Rigaku microfocus X-ray generator (Microflex) and 
a Lang topographic camera. In order to vary the 
crystal thickness at will, wedge-shaped perfect silicon 
crystals were used as the samples. The entrance crystal 
surface is a [001J-cut face. The exit crystal surface 
made an angle of 20 ° with the entrance surface. The 
direction of the thickness gradient is along the [010] 
direction. The slit for blocking the direct beam was 
so placed that part of the image of the directly diffrac- 
ted beam could be observed. 

The sample was aligned for 400 reflection for 
Mo Ka (Fig. 6b). The beam size was about 2 cm high 
and 100 pLm wide. Topographs were then taken in the 
usual way. Figs. 7(a), (b) and (c) are the section 
topographs for /z t  equal to 2, 6 and 10, respectively. 
The normal absorption coefficient is 14.4 cm -1. The 
left line is the image of the direct beam. The image 
of the Pendellrsung of the 400 reflection is on the 
right. The transmitted reflection images of the 220 

Diffracted ... 
Source Cr'stal beam /H r''m (2~0) / / "  

Divergence ~ II . . . . .  1 7 / 7 ~ - ~ - ' - T  7 7 - / T "  . . . . .  

Dirlct I1"~11 ~ ( O O O ) ~ T r a n s m i t t e d  
boom U U (22o)"~. boom 

Slit 
(a) (b) 

Fig. 6. (a) A schematic representation of the experimental set-up; 
(b) geometric relationship among the diffracted beams. 
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and 220 reflections are shown in the middle of the 
figures. For the thin crystal, ~ t - 2  (Fig. 7a), the 
approximately rectangular images of the four-beam 
Borrmann fans, both M o K a l  and MoKt~2, are 
clearly seen for the [220] and [290] reflected direc- 
tions. The shapes of the Borrmann fans which are 
not square are due to the inclination of the exit crystal 
surface with respect to the entrance surface. The 
images are therefore the projection of the square 
OHPQ on the exit surface. When the crystal thickness 
is increased by lowering the sample with respect to 
the incident beam, the images of the direct beams 
still exhibit the sharp edges of the Borrmann fans, 
while the images of the 220 and 220 become slightly 
blurred (Fig. 7b). For the very thick crystal,/zt--- 10, 
the images of the fans were reduced to the lines shown 
in Fig. 7(c). The enhanced anomalous transmission 
for the direct beam is clearly seen. This thickness 
dependence of the diffraction images is very similar 
to that often encountered in two-beam dynamical 
diffractions, except that the absorption of the effective 
modes, i.e. modes 1 and 2, is much lower than the 
minimum value/z = 0.8 cm -1 in two-beam 400 reflec- 
tion (see Fig. 2). 

V. Discussion 

From the calculation and the experimental results 
obtained, we have demonstrated that the multi-beam 
Borrmann fan is the result of the formation of a 
Borrmann pyramid by the Poynting vectors within 
the crystal. For the images of the Borrmann fan to 
be observed, a thin crystal, with /~t <2,  should be 
used. It has also been shown that the Poynting vectors 
for a given N-beam case should lie inside the 
Borrmann pyramid. The variation in directions of the 
Poynting vectors inside the crystal depends on the 

propagation of the wave fields, i.e. the mode of wave 
propagation. In this study we have presented the 
spatial distribution of the Poynting vectors for each 
mode of propagation. This calculation therefore pro- 
vides a direct insight to the relation between the 
energy flow and the modes of wave propagation in 
N-beam diffractions. 
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(a) (b) c) 

Fig. 7. Section topographs of the four-beam case for (a)/~t  ~ 2, (b) ~tt ~ 6 and (c) ~ t -  10. The experimental conditions are 40 kV and 
0.4 mA. The exposure times are 5, 6, and 3 h for (a), (b) and (c), respectively. 


